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The composition and biomass of the zooplankton community within the Canada Basin down to 3000 m
was studied during July 2005 at 12 stations. A total of 111 species including 74 species of crustaceans

Keywords:
Zooplankton (55 species of copepods, 2 euphausiids, 11 amphipods, 1 decapod, 5 ostracods), 17 cnidarians (12
Copepods hydromedusae, 1 scyphomedusae, 4 siphonophora), 1 foraminifera, 4 ctenophores, 2 pteropods, 4

larvaceans, 4 chaetognaths, and 5 polychaetes were identified. Most of the species observed are typical
of the Arctic waters, with the notable exception of several Pacific expatriate copepod species, suggesting
no zoogeographical barrier between the Canadian and Eurasian basins. Overall species inventories
appear unchanged over the past 50 years, and were similar to the Eurasian Basins. Zooplankton biomass
averaged 3.6+0.23gDWm~2, with ~50% of the biomass concentrated within the upper 100m;
nonetheless significant biomass and the majority of species diversity occurred below 100 m. Copepods
represented 91% of the community numerically, followed by pteropods (2.6%), larvacean (1.8%) and
shelled protists (1.5%), with other groups each contributing 1% or less. While copepods represented 85%
of the total biomass, chaetognaths represented 13% on average (ca. 50% of non-copepod biomass),
followed by cnidarians plus ctenophores (4.6%), ostracods (3.6%), and other groups (~2% or less).
Species-specific depth preferences and ranges resulted in statistically distinct communities in different
depth strata and showed an orderly departure in similarity with increasing distance between strata. In
Arctic waters, because temperature varies relatively little over the water column, so should respiratory
rates; hence deep-water species are likely to play a greater role in the transfer or recycling of surface
production than is typical of other deep ocean communities.
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1. Introduction stations are now rare (e.g., SHEBA—Melnikov and Kolosova, 2001;
Ashjian et al. 2003). These recent efforts have also focused
primarily on processes rather than composition.

In the past, copepods, as the most diverse and numerically
important group, have consistently received the majority of
attention. Other zooplankton taxa, both the robust body forms
(Amphipoda, Euphausiacea, Decapoda, Chaetognatha) and more
fragile groups (hydro- and scyphomedusae, Siphonophora, Cteno-
phora, Larvacea), have received less attention due to their limited
occurrence in samples obtained by common vertically deployed
plankton nets. Unfortunately, the common approach was to
identify well known, widely distributed species and to disregard

Despite its remoteness, studies of zooplankton communities in
the Arctic’s Canadian Basin stretch back more than half a century.
The earliest collections for the entire water column focused
largely on composition and vertical zooplankton distribution
obtained by the Russian drifting ice stations North Pole (NP)—2-5
in 1950-1957 (e.g. Brodsky and Nikitin, 1955; Virketis, 1957, 1959),
NP—16-23 in 1968-1978 (e.g. Pavshtiks, 1971, 1977; Kosobokova,
1978, 1980, 1982; Melnikov and Pavlov, 1978; Geynrikh et al.,
1983), the American ice islands T-3 (Grainger, 1965; Harding,
1966; Hughes, 1968; Dunbar and Harding, 1968, Pautzke, 1979),

Alpha (Johnson, 1963), ARLIS II (Hopkins, 1969a, b) and AIDJEX
(Pautzke, 1979). More recent studies have been conducted from
ice breakers (Wheeler et al, 1996; Thibault et al., 1999;
Kosobokova and Hirche, 2000; Hopcroft et al., 2005; Raskoff
et al.,, 2005; Lane et al., 2008; Ota et al., 2008), and drifting ice
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poorly known rare ones (Polychaeta, Siphonophora, Ctenophora,
Ostracoda), with the assumption that low abundance equaled low
importance. Additionally, the absence of specialized identification
guides for the non-copepod Arctic fauna made identification
challenging, compared to the availability of detailed accounts on
the copepods from Norwegian Polar expeditions by Sars (1900)
and identification keys for polar copepods by Brodsky (1950,
1967). Only later did publications begin to contain species
accounts for one (Damkaer, 1975; Raskoff et al., 2005) or more
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(Scott, 1969; Pautzke, 1979; Kosobokova, 1981; Hopcroft et al.,
2005) of these neglected groups.

Although our knowledge of the Arctic zooplankton remains
fragmentary, our understanding of the pelagic fauna has now
progressed to the stage that species list and regional occurrences
have been compiled for the Arctic Ocean (Sirenko, 2001).
Similarly, the depth distribution of many copepods, and the more
common non-copepods, has been summarized in a semi-quanti-
tative manner for the Canadian (Dunbar and Harding, 1968;
Kosobokova, 1989) and Eurasian Basins (Kosobokova and Hirche,
2000), but the vertical distribution of many less common species
remains poorly characterized. A more quantitative analysis of the
vertical structure of Arctic zooplankton, especially the historically
understudied groups, thus seems overdue.

Motivated by renewed interest in the topic of biodiversity by
programs such as the Census of Marine Life, and a renewed
interest in basic exploration of poorly known marine habitats by
NOAA’s Ocean Exploration program, the time was right for a
detailed survey of the zooplankton communities in a deep Arctic
Basin. The Hidden Ocean Expedition within the Canada Basin
during 2005 was a multi-disciplinary effort designed to document
the diversity of life in all of the Arctic Ocean’s major habitat
realms from the surface to the seafloor (see Bluhm et al., 2010).
The zooplankton component of the expedition sought to use
traditional techniques such as plankton nets (this study),
combined with modern in situ imaging and collection capabilities
afforded by a modern ROV (Raskoff et al., 2010), and molecular
techniques (Bucklin et al., 2010), to create a more complete and
quantitative inventory of the zooplankton in this region. Ulti-
mately, the expedition aimed to provide both a baseline and a
comparison with historical data to determine whether zooplank-
ton community structure in the Canada Basin has changed over
the past decades.

2. Methods and material

Zooplankton were collected 29 June-25 July 2005, from the US
Coastguard Cutter Healy. Samples were collected at 12 stations
across the cruise track that encompassed stations north of Point
Barrow in the Canada Basin, as well as on the shallower
Northwind Ridge, and the bathymetrically complex Chukchi
Plateau (Fig. 1). All stations were situated in small leads of open
water within the otherwise complete ice cover. Samples were
collected by a Hydrobios Multinet Type Midi (mouth area 0.25 m?,
150 um mesh) hauled vertically at ~0.5m/s. The system was
equipped with internal and external flow meters and a depth
transducer, all monitored and logged in real time. Sampling was
conducted to divide the water column into fixed-range strata,
using two sequential casts: 3000-2000, 2000-1000, 1000-500,
500-300, 300-0m and 300-200, 200-100, 100-50, 50-25, 25—
0m. Samples were preserved in 10% formalin (4% formaldehyde)
upon retrieval.

All mesozooplankton organisms (>1mm), and all copepodite
stages of Calanus and Metridia, in the samples were counted from
the entire sample and measured under a stereo microscope. For
the smaller zooplankton (<0.8 mm), an aliquot (1:8, 1:10) of the
sample was counted after fractionation with a stempel-pipette.
Most taxonomic groups including Copepoda Calanoida, Ostracoda,
Amphipoda, Decapoda, Euphausiacea, Pteropoda, Chaetognatha,
Larvacea ( = Appendicularia), Siphonophora and hydromedusae
were identified to species level. Copepodite stages of most
calanoid copepods were counted separately and identified to
species level. Exceptions are Discoidae, Microcalanus, Xanthocala-
nus, and young (CI-III) stages of Spinocalanus (Table 1). Prosome
length was used to distinguish early copepodite stages CI-CIII of
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Fig. 1. Map of plankton stations for the USCGC Healy Hidden Ocean 2005 cruise.

Calanus belonging exclusively to C. glacialis and C. hyperboreus.
Prosome length was measured from the tip of the cephalosome to
the distal lateral end of the last thoracic segment using size
criteria of Hirche et al. (1994). Few Copepoda Harpacticoida and
the majority of Oncaeidae were not identified to species.

Biomass, estimated as dry-mass but abbreviated as dry-weight
(DW) by tradition, was calculated from published (Richter, 1994)
and our unpublished taxon-specific length—-DW relationships, and
individual DW (Kosobokova et al., 1998; Laakmann et al., 2009).
For rare crustacean species, wet masses (WW) were calculated
according to length-weight regressions established by Chislenko
(1968), then converted to DW using a factor of 0.16 established for
Arctic zooplankton by Kosobokova (unpubl.), which is similar to
values determined by Wiebe et al. (1975). The DW of all
hydromedusae was predicted from an equation derived for
Aglantha (Matthews and Hestad, 1977) and which appeared to
be consistent with the few other L-W relationships available
(Daan, 1986; Richter, 1994, Persad et al., 2003; Mpgller and
Riisgard, 2007). The Scyphozoa DWs were predicted from a
relationship for Aurelia aurita (Uye and Shimauchi, 2005) using
their estimate of DW = 3.6% WW. It is widely acknowledged that
the DW to carbon conversion of cnidarians is on the order of 10%
(Larson, 1986) while that of crustaceans is more typically 40%
(Bamstedt, 1986). Although converting all DW to carbon would be
more appropriate, most of the Arctic literature employs DW.
Cnidarian DW was normalized (through division by four) so that
the carbon to DW content was directly comparable to that of the
crustaceans. Protists (foraminiferans, radiolarians and tintinnids)
were not included in biomass calculations.
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List of zooplankton taxa collected in the Canada Basin in 2005, with their mean absolute abundance and biomass (mean +SE) and relative contribution of each taxon to

abundance and biomass.

No. New Taxa Abundance, no. m—2, % Biomass, mg DW m 2, %
records mean + SE abundance mean+SE biomass
Calanoida
1 Aetideopsis minor 123425 0.08 5.82+0.89 0.2
2 A. rostrata 200+68 0.1 20.5+6.1 0.6
3 Augaptilus glacialis 183+4.4 0.01 6.74+1.58 0.2
4 Calanus glacialis 1070+157 0.7 333+65 9.2
5 C. hyperboreus 1080+133 0.7 1010+87 27.7
6 Chiridius obtusifrons 642+11.1 0.04 5.49+0.90 0.2
7 Chiridiella abyssalis 23.6+6.2 0.02 5.39+1.44 0.2
8 + Disco triangularis 3.23+1.77 * 0.02+0.01 *
+ Discoidae gen spp.? 282+62 0.2 1.98+0.44 0.05
9 Euaugaptilus hyperboreus 9.14+3.06 0.01 18.6+6.7 0.5
10 Eucalanus bungii® 0.38+0.40 * 0.15+0.16 *
11 Gaetanus brevispinus 74.7+12.9 0.05 9.55+2.69 0.3
12 G. tenuispinus 204+14 0.1 145+1.4 0.4
13 Haloptilus acutifrons 19.1+3.2 0.01 1.91+0.39 0.05
14 Heterorhabdus norvegicus 507 +56 0.4 16.7+1.6 0.5
15 Lucicutia anomala 2.81+1.20 * 0.47+0.21 0.01
16 L. pseudopolaris 16.3+44 0.01 2.66+0.77 0.07
17 L. polaris 18.6+6.4 0.01 4.46+1.37 0.1
18 Metridia longa 4204 +341 2.9 255+29 7.0
19 M. pacifica® 0.64+0.45 * 0.04+0.03 *
20 Microcalanus spp. 31200+3290 21.5 218+23 6.0
21 + Mimocalanus crassus 30.5+7.6 0.02 1.93+0.47 0.05
22 M. damkaeri 5.35+1.91 * 0.30+0.12 0.01
23 Neocalanus cristatus® 0.65+0.46 *® 1.15+0.84 0.03
24 Onchocalanus cristogerens® 0.60+0.42 * 0.00+0.00 %
25 Pareuchaeta barbata 39.9+12.6 0.03 352+11.8 1.0
26 P. glacialis 444+34 0.3 283+17 7.8
27 P. polaris 7.56+3.20 0.01 7.43+3.32 0.2
Pareuchaeta nauplii 99.3+27.3 0.07 2.84+0.64 0.08
28 Paraheterorhabdus ( = Heterorhabdus) 57.94+10.5 0.04 4.79+0.78 0.1
compactus
29 Pseudaugaptilus polaris 6.81+1.83 % 3.71+1.61 0.1
30 Pseudocalanus minutus 93+14 0.06 0.82+0.12 0.02
31 + P. newmani® Observed % Observed *
32 Pseudhaloptilus ( = Pachyptilus) pacificus® 454+14.6 0.03 2.17+1.13 0.06
33 Pseudochirella spectabilis 28.7+8.5 0.02 8.33+3.79 0.2
34 Scaphocalanus acrocephalus ( = S. magnus) 200+22 0.1 48.5+3.5 1.3
35 S. brevicornis 1026 + 154 0.7 35.7+4.8 1.0
36 S. polaris 17.1+4.2 0.01 3.40+1.08 0.09
37 Scolecithricella minor 278+79 0.2 3.69+0.87 0.1
38 Spinocalanus antarcticus 1470+ 201 1.0 54.8 +8.1 1.5
39 S. elongatus 460+97 0.3 15.0+3.1 0.4
40 S. longicornis 8844158 0.6 10.41+1.69 03
41 S. horridus 188+36 0.1 7.22+1.34 0.2
42 S. polaris 160+49 0.1 3.10+0.96 0.09
Spinocalanus cop. spp. 54404705 3.8 70.7+9.2 19
43 + Tharybis groenlandicus 13.2+5.7 0.01 0.19+0.07 0.01
44 Temorites brevis 52.0+5.8 0.04 2.33+0.30 0.06
45 Undinella oblonga 421+2.76 * 0.17+0.08 *
46 Xanthocalanus sp. 3.17+1.74 * 0.10+0.05 *
Cyclopoida and Harpacticoida
47 Harpacticoida gen. sp. 1 19.3+11.3 0.01 0.06+0.03 *
48 Microsetella norvegica 39.4+16.9 0.03 0.12+0.05 *
49 + Lubbockia brevis 8.41+2.87 0.01 0.10+0.03 *
50 L. glacialis 70.7 £22.1 0.05 0.27 £0.08 0.01
51 Hyalopontius typicus 9.82+3.27 0.01 2.95+0.96 0.08
52 Mormonilla minor 3880+400 2.7 6.91+0.65 0.2
53 Oithona similis 28900+2220 19.9 86.8+6.7 24
54 Triconia borealis CV-VI 4960 +245 34 9.92+0.49 0.3
55 Oncaea parila CV-VI 4130+386 2.9 8.27+0.77 0.2
Oncaeidae spp.? 7544204 0.5 0.45+0.12 0.01
Oncaeidae cop. 20300+1700 14.0 12.20+1.03 0.3
Nauplii Calanoida 11900+ 1900 8.2 28.6+4.7 0.8
Nauplii Cyclopoida 26204684 1.8 0.84+0.22 0.02
Copepoda eggs 4820+807 33 5.50+0.92 0.1
Amphipoda
56 + Andaniexis abyssi Observed * Observed *
57 Cyclocaris guilelmi 15.4+4.5 0.01 8.99+3.59 0.3
58 + Eusirogenes arctica Observed * Observed *
59 Eusirus holmi 0.97 +£0.53 % 11.1+8.1 0.3
60 Lanceola clausi 20.9+21.9 0.01 2274237 0.06
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Table 1 (continued )

No. New Taxa Abundance, no. m 2, % Biomass, mg DW m 2, %
records mean + SE abundance mean+SE biomass
61 + Mimonectes sphaericus Observed % Observed %
62 Onisimus glacialis 0.29+0.31 * 1.05+1.09 0.03
63 Scina pusilla Observed * Observed *
64 Themisto libellula 14.7+5.4 0.01 26.6+6.7 0.7
65 T. abyssorum 168 +46 0.1 30.6+6.7 0.8
66 + Rachotropis (inflata?) Observed * Observed *
Decapoda
67 Hymenodora glacialis 7.64+2.35 0.01 39.1+124 1.1
Euphausiacea
68 Thysanoessa inermis 1.32+0.77 * 3.85+2.25 0.1
69 T. raschii 1.36+0.83 * 4.77+3.05 0.1
Mysidacea 0.31+0.32 % 1.01+1.05 0.03
Ostracoda
70 Boroecia maxima 1350+ 56 0.9 125422 34
71 B. borealis observed * * *
72 T Boroecia sp. nov. 44.6+1.86 0.03 3.99+2.23 0.1
73 Proceroecia vitjazi 44.0+1.83 0.03 3.98+2.86 0.1
74 Discoconchoecia elegans Observed % * *
Polychaeta
75 + Phalascophorus pictus borealis 54.9+7.88 0.04 0.99+0.18 0.03
76 + Pelagobia longicirrata Observed * Observed *
77 + Tomopteris septentrionalis Observed * Observed *
78 + Typhloscolex muelleri 191 +21.3 0.1 7.30+1.17 0.2
79 + Minuspio sp. nov. Observed * Observed *
Pteropoda
80 Limacina helicina 3770+723 2.6 5.044+0.87 0.1
81 Clione limacina 5.50+2.08 * 0.33+0.17 0.01
Chaetognatha
82 Parasagitta ( = Sagitta) elegans 2.59+1.09 * 9.35+3.79 0.3
83 Sagitta maxima 23.1+6.6 0.02 12.5+5.2 0.3
84 Eukrohnia hamata 1090+ 83 0.8 445 +42 12.1
E. hamata eggs 198 +156 0.1 0.10+0.08 *
85 + Heterokrohnia involucrum Observed * Observed *
Appendicularia
86 Fritillaria borealis 1180+234 0.8 1.91+0.38 0.05
87 FE. polaris Observed * Observed *
88 Oikopleura vanhoeffeni 1350+229 0.9 22.5+8.1 0.6
89 + Oikopleura gorskyi 4.96+3.10 * 0.01+0.00 *
Foraminifera
90 Neogloboquadrina pachyderma 2020+260 14 0.00+0.00 nd
Hydromedusae
91 Aglantha digitale 140+19 0.1 12.0+2.0 0.3
92 Aeginopsis laurentii 0.94+0.52 % 0.19+0.20 0.01
93 Narcomedusae sp. nov. 5.95+2.01 * 1.35+0.57 0.04
94 + Botrynema brucei 1.84+1.37 * 5.54+3.97 0.2
95 B. ellinorae 249+6.3 0.02 12.1+6.0 0.3
96 + Crossota norvegica 0.30+0.32 * 0.69+0.72 0.02
97 Homoeonema platygonon 30.6+6.4 0.02 0.03+0.01 *
98 + Margelopsis hartlaubi 3.54+1.99 * 0.00+0.00 *
929 Paragotoea bathybia 6.08 +2.04 * 0.01+0.00 *
100 Sminthea arctica 78.0+14.4 0.05 10.5+1.9 0.3
101 + Solmundella bitentaculata 0.61+0.63 * 0.00+0.00 *
102 Rhabdoon reesi® 11.4+2.6 0.01 0.02+0.02 *
Scyphomedusae
103 Atolla tenella 4.44+1.81 * 19.4+13.8 0.5
Siphonophora 540+57 0.4 108+11 3.0
104 Dimophyes arctica nd nd
105 Marrus orthocanna nd nd
106 Muggiaea bargmannae nd nd
107 Rudjakovia plicata nd nd
Ctenophora
108 Beroe cucumis 1.74+1.13 % 0.45+0.44 0.01
109 Mertensia ovum 0.42+0.44 *® 0.05+0.06 *®
110 Ctenophora sp. 1 4.54+1.60 % 0.40+0.33 0.01
111 Ctenophora sp. 2 2.84+1.11 % 0.14+0.06 *

s—biomass and abundance <0.01%; nd—biomass not calculated.

2 Composite groups of unidentified species.

P Pacific expatriates.

€ Presumably Onchocalanus cristatus in Harding (1966).

4 Yakovia polynae in Margulis (1989) and Pararhysomedusae reesi in Shirley and Leung (1970).
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For copepods, vertical distribution ranges and mean abun-
dances of each species within sampled depth intervals were first
explored in a tabular fashion according to Mumm (1993). More
quantitative approaches to community abundance patterns were
explored using the Primer (V6) software package to reveal
patterns in zooplankton communities (e.g., Clarke and Warwick,
2001; Wishner et al., 2008; Schnack-Schiel et al., 2008). The data
were power transformed (either square root or 4th root), and the
Bray-Curtis similarity index between stations was calculated
employing all taxonomic categories as well as only those that
contributed at least 3% to any sample (to remove very rare species
occurring somewhat randomly in collections). The Bray-Curtis
similarity was calculated between each sample. Significant groups
within the hierarchical clustering (« = 5%) were established with
the SIMPROF routine. The Bray-Curtis similarity matrix was
subjected to multi-dimensional scaling (MDS) to establish the
“distance” between samples, and then projected onto 2-D plots, to
which cluster groupings were then superimposed. Insight into the
species combinations responsible for each cluster was explored by
the SIMPER routine, as well as by performing cluster analysis as
above between the species (Hopcroft et al., 2009).

Temperature and salinity data from CTD casts were binned into
1m depth intervals, and an average value calculated for each
multinet sampling interval. Relationships between zooplankton
community composition and averaged variables were explored
with Primer’s BEST routine using physical data normalized as
recommended within Primer, which accounts for the different
measuring scales of environmental factors (Clarke and Warwick,
2001).

3. Results
3.1. Physical oceanography of the region

The Arctic water column is characterized by a complex layering
of water masses and transition zones at all stations (Fig. 2), which
are best highlighted on a log scale (see McLaughlin et al., 2002,
2005). During summer, from the surface to 20-40m, the Polar
Surface Water temperature remained relatively constant
(~—1.2°C) with slowly increasing salinity. Below this zone,
temperature typically increased rapidly at 40-60m in the Bering
Sea Summer Water by nearly 1.0°C, and then declined in the
Bering Sea Winter Water to a temperature minimum at 140-
170 °m. The temperature minimum signaled the transition into
Atlantic waters from the Fram Strait Branch, with a steady
increase in temperature and salinity to a depth of 400 m. Below
400 m, salinity remained high while temperature decreased, due
in part to influences of the Barents Sea Branch, to a depth of
~2000m, where water transitioned to the deep-basin Arctic
Bottom Waters that have little mixing with other water layers and
consequently have long ventilation times. Particularly in waters
above 200 m, slight differences in the depth range of the different
water masses at different stations might be expected to blur
distinctions between the associated fauna that were sampled at
fixed depth intervals.

3.2. Zooplankton composition

A total of 111 species including 74 species of crustaceans (55
species of copepods, 2 euphausiids, 11 amphipods, 1 decapod, 5
ostracods), 17 cnidarians (12 hydromedusae, 1 scyphomedusae, 4
Siphonophora), 1 foraminifera, 4 ctenophores, 2 pteropods, 4
larvaceans, 4 chaetognaths, and 5 polychaetes were identified in
the present collections (Table 1). Most of the species observed are
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Fig. 2. Temperature and salinity profiles of stations 3-15 plotted on a log depth
scale. Temperature in heavy lines, salinity in lighter lines.

typical of Arctic waters, with the notable exception of the
copepods Eucalanus bungii, Neocalanus cristatus, Metridia pacifica,
Pseudocalanus newmani and Pseudhaloptilus ( = Pachyptilus) paci-
ficus. Specimens of all five species were found very rarely, and as
late developmental stages (CVs and adults) only. One species of
larvacean, Fritillaria polaris, has only been reported infrequently
(Virketis, 1957; Melnikov and Kolosova, 2001), while another
larvacean, Oikopleura gorskyi, has only been reported from its type
locality in Norwegian fjords (Flood, 2000) and is a new record for
the Arctic. Three species, a narcomedusae sp. nov., a polychaete
Minuspio sp. nov., an ostracod Boroecia sp. nov. are new to science
and are currently under description (Raskoff, Gagaev, Angel,
unpublished). Several small-sized deep-water copepod species
occurring below 500m were not identified to species level,
including ca. six deep-living oncaeids, and ca. 12 small calanoids
with definitive size of 0.5-0.7 mm predominantly belonging to the
Discoidae family. Some of the latter are new, undescribed species,
and some require taxonomic revision (V.N. Andronov, personal
communication).

Of the 11 large taxonomic groups present, copepods
were the most important in terms of abundance (91.0+0.45%:
mean +standard error), while other groups had limited numerical
contribution (Table 2). Of these, pteropods, larvaceans,
foraminiferans and ostracods (predominantly Boroecia maxima)
contributed from 1% to 2.6% on average, although pteropods
(predominantly larvae and juveniles of Limacina helicina) and
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Table 2
Relative contribution (%) of the different taxonomic groups to the total zooplankton abundance in the Canada Basin, July 2005.
Station No. 3 4 5 6 7 8 9 10 11 13 14 15 Mean + SE
Depth, m 1935 2149 3847 3848 3845 3847 3200 1407 1498 845 1349 2380
Copepoda 90.3 90.1 90.7 87.2 914 92.1 92.5 90.2 923 92.2 90.9 92.1 91.0+045
Amphipoda 0.5 0.3 0.1 0.06 0.04 0.03 0.05 0.3 0.06 03 0.3 0.1 0.2+0.04
Euphausiacea+Decapoda 0.02 0.02 0.02 0.02 0.01 0.02 0 0.01 0.01 0.02 0 0.01 0.0140.002
Ostracoda 1.6 1.1 1.2 1.1 0.6 0.6 0.6 1.0 0.6 1.0 1.6 1.5 1.0+0.12
Cnidaria+Ctenophora 0.5 0.8 0.6 0.7 0.5 0.4 0.6 0.8 0.6 0.5 0.6 1.0 0.6+0.05
Polychaeta 1.7 0.2 0.2 0.2 0.2 0.1 0.1 0.2 0.2 03 0.4 0.2 0.3+0.13
Pteropoda 0.9 24 3.5 6.3 3.9 3.1 1.9 22 1.1 24 25 1.1 2.6+045
Chaetognatha 1.1 0.7 0.7 0.7 0.5 0.6 0.7 1.0 22 0.7 1.2 0.9 0.9+0.13
Larvacea 1.9 24 1.2 3.0 0.9 1.8 13 3.1 2.0 1.9 14 0.9 1.8+0.22
Foraminifera+Radiolaria+Tintinnina 1.5 21 1.7 0.8 2.0 1.5 22 1.2 0.9 0.7 1.0 22 1.0+0.16
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Fig. 3. (A) Relative contribution (%) of the copepod species, eggs and nauplii to the total zooplankton abundance (non-copepods groups not shown); (B) Relative

contribution (%) of different taxa to the total zooplankton biomass.

larvaceans contributed up to 3.0-6.3% at some locations. The
average proportion of chaetognaths was even lower (0.9+0.1%);
other groups occurred regularly but were rare (amphipods,
polychaetes, cnidarians), or were both rare and irregular in
occurrence (euphausiids, decapods, ctenophores).

Among the copepods, the contribution of calanoids and
cyclopoids was very similar, 46% and 45%, respectively (Table 1).
Harpacticoid copepods were of minor importance (Table 1). The
small copepods Oncaeidae (20.84+0.8%), Microcalanus spp.
(21.5+1.4%) and Oithona similis (19.94+1.5%) were major con-
tributors to total zooplankton abundance (Fig. 3A). Altogether,
these smaller species contributed from 50% to 70% of the total.

Other important copepod groups were nauplii, eggs, and several
species of the calanoid Spinocalanus (Fig. 3A).

In terms of biomass, copepods remained the most important
group (74.2+1.2%, Table 1, Fig. 3B). The chaetognaths ranked
second (12.8+0.7%), followed by cnidarians and ctenophores
(4.7+0.5%) and ostracods (3.6+0.5), while amphipods and
decapods plus euphausiids alternated between stations in ranking
of importance (Fig. 3B). Chaetognaths represented ca. 50% of the
total non-copepod biomass. Among the copepods, cyclopoids
contributed <4% of the total biomass, while calanoids contributed
70% on average (Table 1). Four large Arctic calanoid copepods
Calanus hyperboreus, C. glacialis, Paraeuchaeta glacialis and Metridia
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longa dominated biomass at all stations; however, the average
contribution of C. hyperboreus (27.7 +1.4%) was 3-4 times higher
than C. glacialis, P. glacialis and M. longa (9.2+1.4, 7.84+0.5 and
7.0 +0.6%, respectively). Interestingly, the small calanoid copepod
Microcalanus spp., one of the three most important contributors to
the total zooplankton abundance (Fig. 3A), was almost as
important in terms of biomass (6.04+0.8%) as M. longa (Fig. 3B).

3.3. Vertical abundance and biomass distribution

Estimates of abundance, biomass and composition of the
zooplankton community were surprisingly consistent over the
sampling area, particularly after excluding cnidarians and cteno-
phores, which showed large variation between locations due to
their generally low numbers compared to other groups.

The vertical profiles of total zooplankton abundance (Fig. 4A)
and biomass (Fig. 4B) showed overall similarity among stations,
with much of the variability in the top 100m (Table 3). The
maxima for both measurements occurred within the Polar Surface
Water, either in the upper 0-25 (mean 1170indm3,
21mgDWm~3), or subsurface 25-50m (mean 1310indm 3,
38mgDWm™3) layer. Below 50m, a progressive decrease in
zooplankton abundance and biomass was observed, followed by
a slight increase in the 200-300m layer (mean 151indm~3,
3.75 mg DW m—3), the transition between the Pacific halocline and
Atlantic Water (Fig. 4A,B). Below 300 m, there was a slow decrease
of both parameters to the bottom or lower sampling limit
(3000 m, mean 5.7 indm~3, 0.13 mg DW m—3).

(A)
0-25

The averaged vertical distribution of integrated abundance
(ind m~2) indicated that ca. 45% of zooplankton organisms were
concentrated in the upper 0-50 m layer, which represented <2%
of the entire water column. Below 50m, integrated abundance
was at least two times lower in each sampled layer. However,
nearly 50% of all organisms occurred below 100 m (Fig. 5A). The
general distribution pattern of copepod and non-copepod taxa
was similar, but the latter did not exceed 10% of copepod
integrated abundance in any layer (Fig. 5A).

The averaged vertical distribution of integrated biomass (mg
DW m~2) indicated that a large portion of the zooplankton stock,
ca. 40%, was concentrated in the top 50m, with 1/3 in the
uppermost 0-25m layer (Fig. 5B). Half of the total stock was
present in the upper 100 m (Fig. 5B). Copepods comprised 70-90%
of total biomass in each sampled layer above 200 m. Between
200 m and the bottom (or lower sampling limit), the contribution
of other groups increased, varying between 35% and 40% (Fig. 5B).
Total zooplankton biomass integrated over the entire water
column, varied from 2.97 to 5.26gDWm™2 (mean 3.64+0.23¢g
m~—2). At all locations over the continental slope (stns. 3, 4 and 15)
and on the Chukchi Plateau (stns. 11 and 13) biomass values were
25-40% higher in comparison to the deep Canada Basin.

3.4. Vertical distribution of copepod species

The dominant copepod species demonstrated different vertical
patterns (Fig. 6). Abundance and biomass of the dominant
suspension-feeders, Calanus glacialis and C. hyperboreus, was
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Fig. 4. Vertical distribution of zooplankton abundance, ind m~3 (A) and biomass, mgm~> (B) at stations 3-15 in the Canada Basin.

Table 3

Abundance and biomass range and mean+ SE in different water masses in the study area.

Water mass Depth (m) Abundance (ind m~—3) Biomass (mg DW m~—3)
Mean +SE Range Mean + SE Range
Polar Surface Water 0-25 1170+163 522-2290 21.0+4.1 9.3-53.9
25-50 1310+ 146 492-2140 38.4+29 18.4-53.5
Bering Sea Summer Water 50-100 286+28 137-445 8.8+1.4 3.8-179
Bering Sea Winter Waters 100-200 119+13 72-212 2.6+0.2 1.7-4.0
Atlantic layer 200-300 151+9 108-217 3.8+0.2 2.1-49
300-500 67.7+4.1 50.6-95.4 2.2+0.1 1.2-2.7
500-1000 29.2+3.1 18.4-52.4 0.82+0.08 0.5-1.4
1000-2000 18.1+3.2 9.4-43.4 0.31+0.04 0.2-0.5
Arctic Bottom Water >2000 5.7+0.2 1.0-9.9 0.13+0.04 0.05-0.31




K.N. Kosobokova, R.R. Hopcroft / Deep-Sea Research Il 57 (2010) 96-110 103

A

—~

B)

0-25

25-50

50-100

100-200

200-300

Depth (m)

300-500

— total
mmm copepods
=3 non-copepods

T

500-1K Fh
4|
1K-2K ' [ ctotal
I copepods
2K-3K [Inon-copepods
| LA N B L S L B B LR B B LR
0 10 20 30

Abundance (no.x1000 m2)

T T T T
400 400 600 800 1000

Biomass (mg DW m)

T
200

Fig. 5. Average vertical distribution of integrated zooplankton abundance, ind x 1000 m~2 (A) and biomass, mg DW m~2 (B). Black bars show contribution of copepods, dark

grey bars—contribution of other taxa, whiskers are standard error.

concentrated predominantly in the upper layers, with single
specimens of both species found down to the maximum sampled
depths (Fig. 6A,C). Maximum C. glacialis abundance and biomass
were present in the surface layer (0-25m), with a 5-10-fold
decrease in the 25-50 m layer followed by a sharp decrease below
this. Whereas C. hyperboreus peaked in the subsurface layer at 25—
50m (Fig. 6A,C), a pronounced decrease in abundance and
biomass below 50 m was similar to that of C. glacialis.

The omnivorous M. longa and carnivorous P. glacialis were
concentrated in deeper waters, with significantly lower abun-
dance and biomass than the Calanus species (Fig. 6B,D). The
majority of M. longa occurred between the surface and 500 m,
with highest abundance between 200 and 500m (Fig. 6B),
peaking between 200 and 300m. Highest M. longa biomass
occurred in the upper layer (25-100 m) due to the predominance
of late-stage copepodites. High abundance and low biomass
between 200 and 500m was related to the prevalence of
numerous early stage copepodites of lower weight. P. glacialis
occupied a similar depth range (0-500m), but with highest
abundance between 25 and 100m. While its abundance max-
imum was shifted upward relative to M. longa, the layers of
highest biomass (25-100 m) were similar (Fig. 6D).

The remaining copepod species had wide but characteristic
depth-distribution ranges (Fig. 7), and inhabited at least two
(Polar surface and Atlantic Water or Atlantic and Arctic bottom
water) or three water masses. The deeper depth preferences of
most species resulted in extremely low diversity in the surface
waters, and a pronounced increase in diversity with depth,
followed by a modest decline below 2000 m (Fig. 8).

3.5. Vertical patterns of the zooplankton community

The relative contribution of the major taxonomic groups was
not uniform with depth (Fig. 9). In Polar waters above 50m,
copepods and chaetognaths dominated (~80% and ~15% of total
biomass, respectively). Below 50 m, copepods decreased gradually
comprising ~60% in the core of the Atlantic layer (300-1000 m).

Between 1000 and 2000 m, copepods (predominantly cyclopoids)
again increased in importance (~80%), while below 2000 m they
decreased to <60%. Other groups increased with depth, with each
group exhibiting a specific pattern. Chaetognaths contributed
~13% above 1000 m, and then declined abruptly. Cnidarians and
ctenophores gradually increased from ~6% at 100m to ~12-15%
between 500 m and the bottom. Ostracods increased in the upper
layers, to a maximum of 16-17% between 200 and 300 m (the
upper border of Atlantic layer), followed by declines to <2%,
between 500 and 2000 m with a slight increase between 2000 and
3000 m. Amphipods demonstrated maximum contribution in the
deepest stratum, between 2000 and 3000 m (Fig. 9).

Multivariate analyses of community structure revealed almost
identical patterns regardless of the degree of transformation used,
if the entire species set was used or only those contributing at
least 3% were employed. The only notable difference in these
analyses was the level of similarity at which significant minor and
major clusters emerged. Similar to our more subjective inter-
pretation of copepod patterns, the cluster analysis also revealed
distinct depth layers (Fig. 10). Only the two shallowest strata
failed to separate as statistically distinct in their entirety,
suggesting predictable changes in community composition with
depth in all other strata.

Applying multi-dimensional scaling (MDS) to the similarity
data matrix revealed three major patterns (Fig. 10B). Firstly,
clustering appears to be largely related to depth, with the low
stress value (0.06) confirming the 2-D representation of multi-
dimensional space is excellent. Secondly, there is some overlap
within the upper two strata, but otherwise there is a clear
trajectory of community difference across depth layers, with
several transitory samples that failed to cluster as tightly arising
because bottom depth restricted collection to incomplete strata.
Thirdly, we believe the higher variability within the deep-bottom
strata, reflects variable inclusion of the unique near-bottom
epibenthic communities dependent on sampling proximity to
abyssal plain.

In any given depth stratum, the community is distinct, while
the species themselves failed to cluster (not shown), suggesting a
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gradual, but predictable, change in species composition between
layers, as some species decline in abundance or disappear, and
others increase or appear. Attempts to relate community clusters
to environmental variables showed depth to be highly correlated
(Spearman correlation = 0.83), while the inclusion of additional
variables (e.g., temperature, salinity) lowered the correlation,
suggesting neither of these variables per se were driving
community structure, or were simply highly confounded with
depth. In contrast, when grouped at 60-70% similarity, the
clusters more or less represent a Polar mixed layer between 0
and 50 m, Bering Sea Summer Water between 50 and 100m, a
Bering Shelf Winter Water/Fram Strait Branch water group
between 100 and 500 m, a Fram Strait Branch/Barents Sea Branch
water group between 500 and 1000 and 1000 and 2000 m, and
deep Arctic waters below 2000 m.

4. Discussion

4.1. Species inventory

Despite the relatively limited number of stations occupied
during this study, a total of 111 different species were recorded
(Table 1), representing the majority of the species typifying the
central Arctic basins (Sirenko, 2001). Comparison of our data with
other published lists shows that among 111 species found in this
study, 88 species have been previously recorded in the Canadian
Basin (Brodsky and Nikitin, 1955; Virketis, 1957, 1959; Harding,
1966; Shirley and Leung, 1970; Damkaer, 1975) and the Canada
Basin in particular (Kosobokova, 1981; Hopcroft et al.,, 2005;
Raskoff et al., 2005). Three species found (one Narcomedusae, one
Ostracoda and one Polychaeta, Table 1) are new to science. Four
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copepod species, four hydromedusae, five Polychaeta, one Larva-
cea, and four Amphipoda species are listed for the Canada Basin
for the first time (Table 1). Two species, the copepod Onchocalanus
cristogerens and the hydromedusa Rhabdoon reesi, have not been
previously recorded, but appear to have been described in the
Canadian Basin previously under other names. O. cristogerens was
described as a new species from the Arctic Ocean (Markhaseva
and Kosobokova, 1998), with the suggestion that Harding (1966)
identified it as O. cristatus, and Pararhysomedusa reesi (Shirley and
Leung, 1970) and Yakovia polynae (Margulis, 1989) have been
redescribed and synonimized with R. reesi (Stepanjants and
Kosobokova, 2006).

Comparison of our species list for the Canada Basin with
inventories for the Eurasian Basin (Mumm, 1993; Sirenko et al.,
1996; Kosobokova et al., 1998; Kosobokova and Hirche, 2000)

indicates a close similarity in species composition in the two
basins. In total, 104 of the 111 species found in the present study
are also present in the Eurasian Basin. Exceptions are the
copepods E. bungii, N. cristatus, M. pacifica, and P. newmani, which
are restricted to the Canadian Basin. These species are common
inhabitants of the North Pacific, and are often expatriated with
Pacific water into the Chukchi Sea (Stepanova, 1937a,b; Jaschnov,
1940; Hopcroft et al., 2010), and further north into the Arctic
Ocean (Brodsky and Nikitin, 1955; Johnson, 1963; Harding 1966;
Dunbar and Harding, 1968; Pavshtiks, 1971). While the first three
have been repeatedly found in the Canadian Basin, P. newmani is
described north of 74°N for the first time. All four species are
found in the Arctic Ocean, but only as later developmental stages,
with the absence of young stages regarded as an indication of
their reproductive failure in the Arctic (Brodsky and Nikitin, 1955).
A further species, the North Pacific midwater copepod P.
( = Pachyptilus) pacificus, was found at four stations in this survey,
and several times previously in the Canadian Basin as late
copepodites and adults (Kosobokova, 1981). It is likely to belong
to the same group of the Pacific expatriates. However, a
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mechanism that would consistently transport low abundances of
a mesopelagic species across the shallow Bering Shelf is not
readily apparent. P. pacificus has not yet been observed in the
Eurasian Basin (Mumm, 1993; Kosobokova et al., 1998; Kosobo-
kova and Hirche, 2000); thus we are inclined to believe it also fails
to reproduce in the Arctic.

Another striking difference to the Eurasian Basins is the
complete absence of Atlantic expatriates in the Canada Basin.
The most notable absence is the copepod C. finmarchicus, a
common and abundant member of plankton communities in the
Eastern Arctic (Mumm, 1993; Kosobokova and Hirche, 2000;
Hirche and Kosobokova, 2007). Although enormously high
numbers of this Atlantic species are continuously advected into
the Arctic via Fram Strait and the Barents Sea shelf with Atlantic
water (Hirche and Mumm, 1992; Kosobokova and Hirche, 2009), it
almost completely disappears from the pelagic community east of
the Lomonosov Ridge. Only a few specimens of C. finmarchicus
have been found as far as the Makarov Basin, and then still close to
the Lomonosov Ridge (Johnson, 1963; Kosobokova, 1981; Thibault
et al., 1999; Kosobokova and Hirche, 2000). Similar to Pacific
expatriates, C. finmarchicus fails to reproduce or maintain a local
population in the Arctic Ocean. Other Atlantic expatriates (Oithona
atlantica, Paraeuchaeta norvegica, Metridia lucens, Pleuromamma
robusta, Rhincalanus nasutus) present in the Eurasian Basin
(Kosobokova, 2009) have not yet been found in the Canadian

Basin (Brodsky and Nikitin, 1955; Johnson, 1963; Harding, 1966;
Kosobokova, 1981).

In general, we conclude that apart from differences in the
distribution of Pacific and Atlantic expatriates, species composi-
tion in the Western and Eastern Arctic is similar, suggesting
successful between-basin fauna exchange across the underwater
ridges (Kosobokova and Hirche, 2000). This is true for all Arctic
meso- and bathypelagic species, and contrary to the suggestion of
Brodsky and Pavshtiks (1976) that the Canadian Basin hosts a
unique deep-water community of Arctic endemics, with the
Lomonosov Ridge acting as a zoogeographical barrier for penetra-
tion of this deep-water fauna into the Eurasian Basin.

We suggest that the new species found in the Canadian Basin
during this expedition are simply a consequence of more detailed
faunistic analyses. Thus, the species composition in the Canada
Basin remains essentially the same as it was 50-60 (Brodsky and
Nikitin, 1955; Virketis, 1957, 1959; Harding, 1966) and 30
(Kosobokova, 1981) years ago. The zooplankton communities
consist of predominately oceanic species (e.g., Ashjian et al., 2003;
Hopcroft et al., 2005; Lane et al., 2008) typical of an area with
water masses of a strictly Arctic Ocean origin. The advection of
Pacific fauna remains very low (Table 1), despite expectation that
the contribution of Pacific and Arctic shelf species will increase
due to climate change and/or changing circulation regimes (Lane
et al., 2008; Hopcroft et al., 2008).
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In terms of diversity, the Canada Basin displays a pattern found
for many oceanic communities (Vinogradov, 1970), with a
pronounced increase in species diversity with depth (Fig. 8).
Extremely low species diversity in the upper layers occurs in the
Canada (Kosobokova, 1989) and Eurasian basins (Kosobokova and
Hirche, 2000), the Antarctic (Schnack-Schiel et al., 2008), and to
some extent even in subarctic waters (Mackas and Tsuda, 1999). In
the Arctic, it could be explained by less favorable conditions in the
uppermost layers due to striking temperature and salinity
gradients and higher predation risk. Species diversity reaches a
maximum in the Atlantic layer, between 300 and 2000m,
followed by a decrease in the deeper layers in the Canada (Fig.
10) and Eurasian basins (Kosobokova, 2009). The decrease in the
deepest layers could be an artifact of the limited number of
samples collected at depths below 2000m, resulting in an
underestimation of diversity. In this study, at least a dozen small
calanoid species and several deep-water oncaeids were not
identified, so their inclusion in the species inventory would
reverse the decline in diversity observed at the deepest sampling
interval.

4.2. Abundance and biomass

4.2.1. Integral taxonomic contribution

As typical for most Arctic zooplankton studies, copepods were
the most important group of zooplankton in terms of species
number, abundance and biomass (Hopkins, 1969a; Mumm et al.,
1998; Kosobokova and Hirche, 2000; Auel and Hagen, 2002;
Ashjian et al., 2003; Hopcroft et al., 2005). Small copepods (both
calanoids and cyclopoids) dominated numerically, while a few
large calanoids dominated the biomass (Hopcroft et al., 2005).

Many other zooplankton groups are consistently under-
appreciated, consequently we made a concerted effort to
quantitatively assess the role of the non-copepod groups in this
study to address questions concerning their importance in the
Canada Basin. Neither of the two most numerical non-copepod
‘herbivorous’ groups, pteropods (predominantly L. helicina) and
larvaceans, exceeded 3% total abundance (Table 2), and their
biomass was low compared to all other groups. Pteropods and
larvaceans undergo rapid population increases with locally
favorable feeding conditions. In polar environments, short-term
“blooms” of larvaceans usually coincide with increased primary
productivity (Hopkins, 1969a; Acuna et al., 2002; Deibel et al.,
2005) due to their high fecundity, short generation times, and
rapid growth rates (Hopcroft et al., 1998; Lopez-Urrutia et al.,
2003). Significant larvacean abundance and notable biomass has
been observed recently in Arctic waters (e.g., Hopcroft et al., 2005,
2010; Deibel et al., 2005; Lane et al., 2008), although it is not clear
if this represents an increase in their abundance, or simply greater
attention been paid to their presence. In contrast, growth rates of
L. helicina are low (Fabry, 1989) and generation times long
(Conover and Lalli, 1972; Kobayashi, 1974; Dadon and Cidre,
1992; Shkoldina, 1999), but favorable food may result in high
reproductive rates, with transient swarms of juveniles, such as
encountered in this study.

Other taxonomic groups were generally of lower numerical
importance than pteropods and larvaceans, but relatively more
important in terms of their biomass. Chaetognaths represented
about half the non-copepod biomass, and are widely recognized
as one of the most important copepod predators in Arctic waters
(Mumm, 1993; Richter, 1994; Kosobokova and Hirche, 2000; Auel
and Hagen, 2002), while ostracods are recognized as important
scavengers (Chavtur and Bashmanov, 2007). Notably, cnidarians
(including ctenophores) ranked as the second most important
group of non-copepod predators after chaetognaths when their

biomass is appropriately normalized to allow comparison. A fuller
consideration of the importance of cnidarians and ctenophores as
predators during this expedition occurs elsewhere in this issue
(Raskoff et al., 2010; Purcell et al., 2010).

4.2.2. Vertical abundance and biomass structure

Vertical patterns of zooplankton abundance and biomass
indicate relatively uniform distribution over the study area. These
patterns with a large portion of the zooplankton concentrated in
the uppermost layers at all studied locations (Fig. 4A,B) were
consistent with other observations on annual cycles of the
zooplankton distribution (Hopkins, 1969a; Pautzke, 1979; Koso-
bokova, 1982; Ashjian et al, 2003) and typical of the Arctic
summer. The much lower abundance and biomass per unit
volume below 100 m, has lead to the mindset that deeper layers
are unimportant. When we consider units of per square meter,
thereby allowing for the absolute contribution in each layer, we
find that about half of all mesozooplankton occurs below 100 m
numerically, and the same holds true in terms of biomass, at least
for the copepods. The consequence is that, in the Arctic, the
importance of the unique assemblages of mesopelagic and
bathypelagic species is extremely under-appreciated. Elsewhere
in the world it is argued that zooplankton at these depths can be
ignored because they live in much colder waters than the surface
species, and therefore contribute proportionately little to com-
munity processes such as grazing and carbon recycling (i.e.
respiration). Clearly this argument does not hold in the Arctic,
where temperatures, and consequently respiration rates will differ
little across depth; hence the deep-water zooplankton is a more
equal player in the consumption and recycling of carbon.

Within the upper 100m water layer, a pronounced surface
maximum of abundance and biomass results from seasonal
aggregation of almost the entire populations of the large-bodied
Arctic suspension-feeding copepods C. hyperboreus and C. glacialis
(Fig. 6A,C). Moreover, both these species had their abundance
and biomass maxima within the upper layer 0-50m, although
C. hyperboreus demonstrated a deeper maximum compared to
C. glacialis. Several seasonal studies showed that C. hyperboreus
concentrates in the uppermost waters by early summer, and
descends to intermediate depths (~400-500m) during late
summer (Brodsky and Pavshtiks, 1976; Geynrikh et al., 1983;
Ashjian et al., 2003). The shift of the C. hyperboreus maximum to
the 25-50m subsurface layers might indicate the onset of
autumnal descent during end of July (Fig. 6A,C), but it is equally
possible C. hyperboreus simply avoids the reduced salinity
experienced within the surface layer in comparison to its sibling
species.

Other dominant copepod species showed slightly (e.g., M.
longa) or considerably deeper (e.g., P. glacialis) abundance and
biomass maxima compared to Calanus spp. (Fig. 6B,D), but due to
relatively lower input to the total they did not remarkably affect
the general patterns. Although M. longa also performs seasonal
migrations (Kosobokova, 1981; Geynrikh et al., 1983, Pertzova and
Kosobokova, 2003; Ashjian et al., 2003), its seasonal ascent in the
Arctic takes place later compared to Calanus species (Geynrikh et
al., 1983). Paraeuchaeta spp. seems to perform little seasonal
migrations (Skarra and Kaartvedt, 2003). The depths where these
omnivores and carnivores concentrate are presumably related to
distribution of their food sources. This is no doubt the case for the
numerous other species not reported here in detail. As illustrated
in this study, most copepod species have relatively characteristic
depth distributions (e.g., Kosobokova and Hirche, 2000; Laakmann
et al., 2009).

Similar to copepods, depth specificity in many non-copepods
results in the relative contribution of each taxonomic group being
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non-uniform across depth, and hence some groups became more
or less important depending on the depth strata. As the best
described community components, copepods and chaetognaths
depth-distribution was consistent with other studies (Kosobokova
and Hirche, 2000, and references therein). The contribution of
cnidarians and ctenophores increased with depth, but the lack of
attention to this group in all but a handful of studies that are
limited to abundances (Scott, 1969) precludes any comparison to
the literature. As is typical, the importance of ostracods,
represented almost entirely by B. maxima, peaked at mid-depths
(in our study at the upper border of Atlantic layer). Notably both
abundance and biomass of ostracods were much higher (and our
peaks deeper) than a recent data compilation for this species
(Chavtur and Bashmanov, 2007), likely due to differences in mesh
size and sampling depths. The amphipods demonstrated max-
imum contribution in the deepest stratum, but like other non-
copepod groups, comparable data are limited, and where present
often restricted to much shallower waters (e.g., Auel and Werner,
2003; Hopcroft et al., 2005).

These more descriptive patterns are fully supported by the
multivariate analysis, which in addition to showing the general
distinctness of each sampling stratum, indicated four groupings of
slightly wider separation within the water column. A very narrow
epipelagic zone of 50 m thickness hosted the copepod-chaetog-
nath-dominated community with a high proportion of filter-
feeding copepods. This layer transitioned into one at 50-100 m
(the Bering Sea Summer Water) where the community structure
began to acquire mesopelagic faunal character with a lower
importance of copepods, almost constant contribution of chae-
tognaths and increasing proportions of cnidarians and cteno-
phores, ostracods, amphipods and decapods moving deeper.
Below 1000 m, the change to the bathypelagic took place with a
shift back to a copepod- and jelly-dominated community, with an
almost complete absence of pelagic chaetognaths. Below 2000 m,
in the Arctic Bottom waters, however, copepods declined again in
favor of amphipods, cnidarians, ctenophores, and ostracods. In
summary, it is the unique distributions of all species, linked both
to depth preferences and water mass affinities that are respon-
sible for the clear transition of zooplankton communities between
our sampling strata, much as it occurs with zooplankton else-
where in the world (Yamaguchi et al., 2002; Robison, 2004;
Wishner et al.,, 2008; Gaard et al,, 2008; Schnack-Schiel et al.,
2008).

4.3. Regional and Panarctic comparison

The integrated biomass showed very little variation between
sampling locations with slightly higher biomass over the
continental slope north of Point Barrow and over the Chukchi
Plateau, which are assumed to be more productive than the deep
Canada Basin (Ashjian et al., 2003). However, consistent with
recent biomass assessments from the Canadian Basin (Wheeler et
al., 1996; Thibault et al., 1999; Ashjian et al., 2003; Hopcroft et al.,
2005), our data indicate that zooplankton biomass in this sub-
basin is greater than historically believed. Our average of 3.6 gm—2
is at least 2-3 times higher than earlier assessments for the
Canadian Basin (Hopkins, 1969a, b; Pautzke, 1979; Kosobokova,
1982). Ashjian et al. (2003) and Hopcroft et al. (2005) suggest that
the zooplankton stock may have been underestimated previously
due to biased sampling techniques. Furthermore, regional varia-
bility in zooplankton distribution may also be superimposed on
methodological problems in some surveys. For instance, during
drift of NP-22 in 1975 zooplankton was collected in one of the
poorest areas of the Arctic Ocean: the Central Beaufort Gyre
(Melnikov and Pavlov, 1978; Kosobokova, 1982), and much of the

T3 drift zooplankton data (Pautzke, 1979) also come from a region
with perpetually thick ice cover. Thus, in both cases there might
be bias towards low estimates.

In a broader geographical context, it has been suggested that
the zooplankton stock in the Canadian Basin is on average poorer
than in the Eurasian Basin (Kosobokova and Hirche, 2000), a
conclusion supported by this and other Canadian Basin studies
(Thibault et al., 1999; Ashjian et al., 2003; Hopcroft et al., 2005),
and a recent data compilation for the Eurasian Basin (Kosobokova
and Hirche, 2009). The most striking differences are for biomass
along the Siberian continental slope in the Eurasian Basin, where
average values of 6.9gm™2 were reported (Kosobokova and
Hirche, 2009), about twice of what we found in the Canada Basin.
The most likely reason for the differences is an absence of strong
allochtonous zooplankton input in the Canadian Basin compared
to the slope regions of the Eurasian Basin (Kosobokova and Hirche,
2000, 2009). Although there is significant inflow of allochtonous
zooplankton through Bering Strait (Springer et al., 1989; Hopcroft
et al., 2010), and strong cross-shelf and along-shelf transport of
zooplankton (Ashjian et al., 2005; Lane et al., 2008; Llinas et al.,
2009), the volume of inflow from the Atlantic into the Arctic
Ocean is 5-8 times greater than that of the Pacific (Carmack and
Wassmann, 2006).

5. Conclusions

In some respects, the composition of the Arctic Ocean
zooplankton appears to be relatively well characterized, yet
~25% of the species encountered were either unrecorded from
the Canada Basin or undescribed. With a handful of exceptions,
such as species expatriated from sub-polar waters, there seems to
be no zoogeographical barrier between the Canadian and Eurasian
basins throughout the entire depth range, and no apparent change
in species membership over the last 50 years of zooplankton
sampling in the Canadian Basin.

During summer, much of the zooplankton biomass in the basin
is concentrated within the upper 50-100m, but significant
biomass and the majority of species diversity occurs below this
layer. Although copepods, particularly a few mostly herbivorous
species, dominate the biomass, other groups, notably predators
such as chaetognaths and cnidarians contribute significantly,
especially below the surface layer. Species-specific depth prefer-
ences and ranges result in statistically distinct communities at
different depths, all of which participate actively in the recycling
of matter and energy with the deep-water column of the Arctic
Ocean. The degree to which the seasonally compressed produc-
tivity in the Arctic Ocean is recycled within the water column
compared to other deep oceans, and how this might change in the
future, would seem to be logical directions for future research.
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